
 
 

 
 

 
People's Democratic Republic of Algeria 

Ministry of Higher Education 

and Scientific Research 

Tissemsilt University 

 

Faculty of Science and Technology 

Department of Science and Technology 

 

Course handout 

 

NUMERICAL METHODS  

 

Sector: Mechanical Engineering. 

Specialty: Mechanical Construction. 

 

 

Prepared by :  Mr: KHERRAB Mohamed
1
.  

                   Dr : SATLA Zouaoui
2 

1
Assistant teachers class “A”. 

                                             
2
 Class “B” lecturers. 

 

 

 

 

 

Tissemsilt - 2022/2023 



 
 

 
 

Introduction 

Numerical methods play a crucial role in solving mathematical problems that cannot be easily 

solved using analytical methods. These methods involve the use of mathematical algorithms and 

computational techniques to obtain approximate solutions to various mathematical models and 

equations. This introduction aims to provide an overview of numerical methods, their applications, 

and their importance in modern scientific and engineering fields. 

Numerical methods encompass a wide range of techniques, each tailored to address specific types 

of problems. Some of the fundamental concepts and techniques in numerical methods include root-

finding, interpolation, numerical integration, solving systems of linear equations, and solving 

ordinary differential equations. These methods are used extensively in diverse fields such as 

physics, engineering, finance, computer science, and many others. 

Accuracy and efficiency are two key considerations in numerical methods. Achieving accurate 

results is essential to ensure the reliability of the solutions obtained. Efficiency refers to the 

computational speed and resource utilization of the numerical algorithms. Both accuracy and 

efficiency are vital factors in determining the effectiveness of numerical methods. 

One of the primary challenges in numerical methods is dealing with errors. Numerical computations 

involve approximations and rounding-off, which introduce errors into the results. Understanding the 

sources and effects of these errors is crucial for assessing the reliability of the solutions obtained. 

Backwards error analysis is a technique used to analyze the impact of errors on the accuracy of 

numerical algorithms. 

Floating-point arithmetic is another important aspect of numerical methods. It deals with the 

representation and manipulation of real numbers in a computer system. Understanding the 

limitations and characteristics of floating-point arithmetic is crucial for avoiding numerical 

instabilities and ensuring accurate computations. 

Numerical linear algebra is a significant component of numerical methods. It involves the study of 

algorithms and techniques for solving linear systems of equations and eigenvalue problems. Sparse-

matrix/iterative and dense-matrix algorithms are commonly used to solve these problems 

efficiently. 

Numerical methods have seen significant advancements in recent years due to advancements in 

computer hardware and software. High-performance computing and numerical libraries have 

enabled the development of more sophisticated algorithms and improved computational efficiency. 

Additionally, programming languages such as MATLAB and Python provide powerful tools for 

implementing and executing numerical methods. 

In conclusion, numerical methods are essential for solving mathematical problems that cannot be 

easily solved using analytical methods. These methods provide approximate solutions with a focus 

on accuracy and efficiency. With their wide range of applications in various fields, numerical 

methods continue to play a vital role in advancing scientific and engineering research. 

 



3 
 

 
 

Table of Contents 

I. Solving nonlinear equations ...................................................................................................................... 5 

I.1 Dichotomy method (or bisection) .......................................................................................................... 5 

I.2 Newton's method also called Newton-Raphson method ....................................................................... 5 

I.1 Fixed point method ................................................................................................................................ 6 

I.4 Applications ........................................................................................................................................... 6 

I Polynomial interpolation ......................................................................................................................... 10 

II.1 Introduction ......................................................................................................................................... 10 

II.2 Definition ......................................................................................................................................... 10 

II.3 Condition d’interpolation polynomiale............................................................................................ 10 

II.4 Lagrange interpolation ..................................................................................................................... 10 

II.2.1 Theorem. ...................................................................................................................................... 10 

II.4.3 Demonstration. ............................................................................................................................ 10 

II.4.4 Matlab. ......................................................................................................................................... 11 

II.4.5 Example ....................................................................................................................................... 12 

II.5 Hermit interpolation ............................................................................................................................ 13 

II.5.1 Theorem. ...................................................................................................................................... 13 

II.5.2 Demonstration. ............................................................................................................................ 13 

II.5.3 Matlab. ......................................................................................................................................... 14 

II.6.3 Examples ..................................................................................................................................... 15 

II.6 Newton's interpolation ......................................................................................................................... 16 

II.6.1 Definition. .................................................................................................................................... 16 

II.6.2 Theorem. ...................................................................................................................................... 16 

II.6.3 Démonstration. ............................................................................................................................ 16 

II.6.4 Matlab. ......................................................................................................................................... 17 

II.6.5 Example ....................................................................................................................................... 18 

II.7 Chebyshev interpolation ...................................................................................................................... 18 

II.7.1 Definition. .................................................................................................................................... 18 

II.8 Spline ................................................................................................................................................... 18 

Spline interpolation is a piecewise approximation method that is done in several steps to construct a 

representative polynomial. .......................................................................................................................... 18 

II.8.1 Definition. .................................................................................................................................... 18 

II.8.2 Linear Spline ................................................................................................................................... 19 

II.8.2.1 Matlab. ......................................................................................................................................... 19 

II.8.3 Quadratic spline ........................................................................................................................... 20 



4 
 

 
 

II.1.1 Matlab. ......................................................................................................................................... 21 

II. Question ............................................................................................................................................... 23 

III. numerical integration ........................................................................................................................... 24 

III.1. Trapeze method ........................................................................................................................... 24 

III.1.1 Matlab. ......................................................................................................................................... 24 

III.2 Simpson's method ............................................................................................................................ 25 

III.3 Matlab. ............................................................................................................................................. 26 

III.1 Applications ......................................................................................................................................... 27 

IV. Method of direct solution of systems of linear equations .................................................................... 28 

IV.1 Gaussian method ................................................................................................................................. 28 

IV.1 The LU (Lower-Upper) factorization method ..................................................................................... 28 

IV.3 Matlab. ............................................................................................................................................. 29 

V. Solving Differential Equations ................................................................................................................ 31 

V.1 Euler's method ..................................................................................................................................... 31 

V.2 The Runge-Kutta method .................................................................................................................... 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

 
 

I. Solving nonlinear equations 

I.1 Dichotomy method (or bisection) 

The dichotomy method is based on the following property: 

Let f be an increasing function on: 

,   -        ( ) ( )            -   ,           ( )     

 

 

Starting from      ,   -  the dichotomy method produces a sequence of subintervals 

      ,     -    , such as   (  ) (  )     

Formally, we put 

              So for      

If  (  )                            

Otherwise,                     

We notice     (     )   

I.2 Newton's method also called Newton-Raphson method 

 

Suppose            ̀( )      (i.e. α is a simple root of). by asking 

     ( ( ))             

and taking the initial value( ) , we obtain Newton's method (also called Newton-Raphson or 

tangent method) 

        
 (  )

  (  )
         



6 
 

 
 

At the n-th iteration, Newton's method requires the evaluation of the two Functions   and    at point 

( ) . 

I.1 Fixed point method 

We give in this section a general procedure to find the roots of a nonlinear equation. The method is 

based on the fact that it is always possible, for    ,   -     , to transform the problem  ( )      

en an equivalent problem    ( )   , or auxiliary function   ,   -      was chosen so that 

 ( )    When  ( )   . Approaching the zeros of   therefore comes down to the problem of 

determining the fixed points of   , which is done using the following iterative algorithm: 

 Given ( ) , we set 

 (   )   (  )     

We are given  ( ) and we consider the sequence  (   )    ( ( ) ), for          

1.       ,   -  ( )    ,   -  

2.        (,   -)  

3.           ( )            ,   -  

Alors   a un unique point fixe α dans[a,b]et la suite *  ( ) + converge vers   

pour tout choix de  ( )    ,   - De plus,on a  

Then   has a unique fixed point   in ,   - and the sequence *  ( ) + converges to   for any choice 

of  ( )    ,   -. Moreover, we have 

I.4 Applications  

 

1. Implement the dichotomy method in Matlab to solve the function  ( )  taking x  

,         - 

 

 ( )=x.^2-2.*x-3 

 

 

2. Write the algorithm for solving the equation   ( ) using Newton's method. We will make 

mistakes = 10-5. 

  (x) = x
3
− 10x

2
+ 29x − 20 = 0    giving   x0=5. 

3. We consider the function   defined by           :  (x)=x
2
− x − 1  



7 
 

 
 

 Determine the fixed point of  . 

 Establish a Matlab program to solve   (x)=0 by  using the fixed point method. 

 

 

Algorithm. Bisection Method 

close all 
clear all 
clc 
xl=2, 
xu=3; 
myfunc=@(x)x.^2-6; 
x=linspace(xl,xu,100); 
fun1=myfunc(x); 
fig=figure(); 
set(fig,'color','white') 
plot(x,fun1) 
grid on 
hold on 
funmin=min(fun1); 
funmax=max(fun1); 
plot([xu xu],[funmin funmax],'k') 
plot([xl xl],[funmin funmax],'k') 
err=5; 
%fun=myfunc(xn); 
while err>1e-3 
  
xn=xl; 
fun=myfunc(xn); 
delx=(xu+xl)/2; 
xn=delx; 
ystar=myfunc(xn); 
if sign(ystar)~=sign(fun) 
xl=delx; 
else 
 xu=delx;    
end 
 
err=abs(ystar) 
 
%fprintf('la racine est %g/n',xn) 
end 
%xn 
%fun 
%fprintf('la racine est %g/n',xn)  

 



8 
 

 
 

Algorithm. Fixed point method 

function out=ptfix(x) 
close all 
clear all 
clc 
 
f=inline('x.^2-2.*x-3'); 
p=[1 -2 -3]; 
roots(p); 
g=inline('(x.^2-3)/2'); 
 
x=-2:0.1:2; 
figure (1) 
plot(x,x,'k-','linewidth',2) 
hold on 
plot(x,g(x),'b-','linewidth',2) 
hold on 
plot(x,f(x),'r-','linewidth',2) 
x1=0;%x2=g(x1)  
err=1; 
while err > 1e-3 
     
     x2=g(x1) 
     err=abs(x2-x1); 
     x1=x2 
     
end 
 
%x1 

 

Algorithm. Newton-Raphson method 

clear all 
clc 
syms p 
x=[0,2,4,5,8,10]; 
y=[-1,1,6,0,2,5]; 
n=size(x,2) 
d=zeros(n,n); 
d(:,1)=y; 
for j=2:n 
for i=j:n 
d(i,j)=(d(i-1,j-1)-d(i,j-1))/(x(i-j+1)-x(i)); 
end 
end 
Df=1; 
for j = 1 : n-1 
   Df=(p - x(j)).*Df; 



9 
 

 
 

  c(j)=Df.*d(j+1,j+1); 
end 
   P=sum(c) plot(x,f(x),'r-','linewidth',2) 
x1=0;%x2=g(x1)  
err=1; 
while err > 1e-3 
     
     x2=g(x1) 
     err=abs(x2-x1); 
     x1=x2 
     
end 
 
%x1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

 
 

I Polynomial interpolation 

 

II.1 Introduction 

In numerical problems, we very often substitute a known function  ( ) at a finite number of points 

by a simpler and easily computable function  ( ): this is the approximation. In this chapter 

polynomial interpolations and their implementation in Matlab is addressed.  

II.2 Definition 

Consider n+1 couples (        )  The problem is to find a polynomial    called interpolation 

polynomial or interpolating polynomial which allowed to calculate y for any value of x, such as:  

   (  )      
                               (II.1) 

 The points    are called interpolation nodes. 

II.3 Condition d’interpolation polynomiale 

The interpolation polynomial   (  ) must check the condition       (  )         , that is, the 

polynomial must pass through all the points    (      ). 

II.4 Lagrange interpolation 

 

II.2.1 Theorem.   

Given n+1 distinct points           and n+1 corresponding values           , there exists a unique 

polynomial P such that 

   (  )     for            (II.2) 

 

II.4.3  Demonstration.  

To prove the existence, we will explicitly construct   . Let's pose 

 
        ( )  ∏

    

     
             

 

   
   

 
(II.3) 



11 
 

 
 

Polynomials*               + forming a basis of   . By breaking down     on this basis, we have 

   ( )  ∑     ( ) 
   ,   d’où (II.4) 

   (  )  ∑    (  )                     

 

   

 (II.5) 

The coefficients   (  )have the following property: 

   (  )      {
                
                

        being Kronecker's symbol (II.6) 

 

We instantly determine that      . 

Therefore, the interpolation polynomial exists and is written in the following form 

  ( )  ∑    ( )

 

   

 (II.7) 

II.4.4 Matlab.  

A program called Lagrange makes it possible to carry out a polynomial interpolation based on the 

Lagrange algorithm is implemented under Matlab. Given at the program input two vectors pointx 

and pointy contain respectively the interpolation variables and the corresponding function values. 

The output is the calculated polynomial. After entering data, two for loops and an inequality 

condition are used to obtain the polynomial, at the end of the program a graph is proposed to 

validate the results algorithm 

Algorithm. Lagrange Lagrange interpolation 

function Poly = Lagrange (pointx,pointy) 
n=length(pointx); 
syms x  
n=length(pointy); 
L=1; 
Poly=0; 
for i=1:n 
    for j=1:n 
       if i~=j 
          L=L*((x-pointx(j))/(pointx(i)-pointx(j))); 
       end 



12 
 

 
 

    end 
    plot(pointx,eval(subs(L,pointx))) 
    hold on 
    Poly=Poly+pointy(i)*L; 
    L=1; 
end 
      plot(pointx, subs(Poly,pointx),'*',pointx,pointy) 
end 

II.4.5 Example 

 

 We give the function   ( )       (  ) defines on the interval-   , , to construct the 

corresponding polynomial using the given Matlab Lagrange program, the interval is devised 

on 20 nodes. The results obtained are plotted in Figure II.4. The function   is presented in 

black line and the polynomial with stars.  

 

Figure II.4. Lagrange interpolation of the function ( )       (  ) 

 

 Another example is presented here, this time we consider the following table giving the 

values   (       ) the kinematic viscosity of water as a function of temperature   (  ) : 

  (  ) 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

  (    
   ) 

1.14 1.1

1 

1.0

8 

1.0

6 

1.0

3 

1.0

1 

0.98

3 

0.96

0 

0.93

8 

0.91

7 

0.89

6 

0.87

6 

0.85

7 

0.83

9 

 

Figure II.5 shows the graphs of the data (solid line) and of the corresponding Lagrange polynomial 

(Stars) 



13 
 

 
 

 

Figure II.5. Lagrange interpolation of Data 

 

II.5 Hermit interpolation 

II.5.1 Theorem.   

giving (    
( )(  )) for                       where      , There is a unique 

polynomial   de degré    p called the Hermite interpolation polynomial such that: 

    ∑∑ ( )(  )   ( )

  

   

 

   

 (II.8) 

II.5.2 Demonstration.  

Polynomials     are given by the recurrence relations defined for any                

    ( )  
(    )

 

  
  ( )  ∑   

 
  

(   )
(  )   ( )

  

     

 (II.9) 

 

and 

     
( )  

(    )
  

   
  ( ) (II.10) 



14 
 

 
 

Where  

 
  ( )  ∏  (

    

     
)

    

  

 

   
   

 
(II.11) 

In the case where   is constant and equal to 1, we have the following expressions : 

   ( )  ∑  ( ) ( )    ( )  ( )

 

   

 (II.12) 

With 

   ( )  (   (    )  
 ( ))  

 ( ) (II.13) 

and 

   ( )  (    )  
 ( ) (II.14) 

where    is the Lagrange polynomial. 

II.5.3 Matlab.  

We propose a Program called Hermit in which an implementation of the Hermit formula is carried 

out in order to obtain the interpolation polynomial. In pose as input, three vectors pointx, pointy, 

and pointyd respectively contain the interpolation variables, the corresponding function values and 

its derivative. The interpolation polynomial is returned as output. Two for loops and a Lagrange 

inequality condition are used to produce the functions needed for the interpolation. A after a 

summation of all the iterations is set up to have the polynomial, and finalizes it by drawing the 

validation curve.    

Algorithm. Hermit Interpolation of Hermit 

function y = Hermit (pointx,pointy,pointyd) 
 n=length(pointx); 
y=0; 
L=1; 
syms x 
for i=1:n 
for j=1:n 
     if (i~=j) 



15 
 

 
 

          L=L*(x-pointx(j))/(pointx(i)-pointx(j)); 
         dL=L*(1/(pointx(i)-pointx(j))); 
     end 
end 
Ri=(1-2*(x-pointx(i))*dL)*L^2; 
si=(x-pointx(i))*L^2; 
y=y+ pointy(i)*Ri + pointyd(i)*si; 
L=1; 
end 
plot(pointx,subs(y,pointx),'*',pointx,pointy) 
end  
 

II.6.3 Examples 

 

1. We give the function 

 

x =  1:.2:2;  y  ; 

 ( )      Set to interval-   , 

 

Figure II.4. Hermit's interpolation of the function  ( )      

 

 

 

 



16 
 

 
 

II.6 Newton's interpolation 

 

II.6.1  Definition.   

 

Let the operator ∇ be defined by:    ( )     ∇   (  ∇ )   ( ). this operator has the 

following properties : 

 

            ∇(   )  ∇  ∇  

∇(  )   ∇                   
∇ (∇  )  ∇(   ) 

∇ ( )    

(II.15) 

 

 

II.6.2  Theorem.   

 

According to Newton's method, The interpolation polynomial of degree n which passes through 

the       points (       ) (       )   (           ) (       ) where the    are distinct, is unique 

and given by: 

   ( )        (    )     (    )(    )   
   (    ) (      ) 

(II.16) 

 

II.6.3 Démonstration.  

 

The coefficients of    are determined by forcing the polynomial through each data point: 

        ( )         . This gives the following equations: 

 

{
 
 
 
 
 

 
 
 
 
 

    (  )

   
 (  )   (  )

     
 ∇   (     )

   

 (  )   (  )
     

 
 (  )   (  )

     

     
 ∇   (        )

 
 
 

   

 (  )   (    )
     

   
 (  )   (  )

     

     
 ∇   (       )

 

 

(II.17) 



17 
 

 
 

It is more convenient to work with the following format: 

 

    (  )     

    (  ) ∇   (     ) 
∇   (        ) 

  

    (  ) ∇   (     )   

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

  

    (  ) ∇   (       ) ∇   (            ) 

. 

. 

. 

∇   (       ) 

 

(II.18) 

II.6.4   Matlab.  

 

Newton's interpolation algorithm is implemented in the New_interp program. The code allows to 

have the polynomial as an output. We note that the input vectors pointx, pointy are vectors 

containing respectively the interpolation variables, and the corresponding function values. Two for 

loops are used to fill a matrix with the derivative operators, and using another loop the polynomial 

was created. The code will end with a validation plot. 

 

Algorithm. New_interp Newton interpolation 

function y = New_interp (pointx, pointy) 
    m  = length(pointx); 
    Df = zeros(m, m); 
    Df(:, 1) = pointy'; 
 for j=2:m 
    for i=j:m 
        Df(i,j)=(Df(i-1,j-1)-Df(i,j-1))/(pointx(i-j+1)-pointx(i)) 
     end 
end   
syms x 
    b=1; 
    for j = 1 : m-1 
   b=(x - pointx(j)).*b; 
   c(j)=b.*Df(j+1,j+1); 
    end 
   y=pointy(1)+sum(c); 
plot(pointx,subs(y,pointx),'*',pointx,pointy) 
end 
 



18 
 

 
 

 

II.6.5 Example 

 

We give the function 

 ( )       (  ) Set to interval -   , 

 Calculate The values of   and the deferences divided over the interval -   , with a step of 

0.2 

  Corresponding to the function Write Newton's polynomial  ( )  

 Evaluate  ( ) for                          

 Draw the figures  ( )      ( ) 

II.7 Chebyshev interpolation  

 

II.7.1 Definition.   

 

Tchebychev interpolation, also called Lagrange interpolation at Tchebychev points, is a Lagrange 

interpolation performed at particular points defined by 

      (
 (   )   

    
)                 

    

II.8 Spline 

 

Spline interpolation is a piecewise approximation method that is done in several steps to construct 

a representative polynomial. 

II.8.1  Definition.   

 

Let *          +       interpolation points of a function   on ,   -  We are looking for a 

polynomial    (  ) of degree ( ) on each elementary interval ,       , verified 

 

 
     (  )      ,      -    ,  for           

         
 

(II.19) 

i-th, polynomial      (  )      ,      -composing the spline has order ( ) and can be written 

Under the form 



19 
 

 
 

       ∑     (    )
 

 

   

 (II.20) 

II.8.2 Linear Spline  

 

Giving (     ) (     )   (     )  , in [a,b], Fit the linear splines to the data. It simply involves 

forming the consecutive data by straight lines. So if the above data is given in ascending order, the 

linear splines are given by the following functions 

   ( )  

{
 
 

 
 

   ( )               ,     -

   ( )               ,     -
 
 
 

     ( )                   ,       -

 (II.21) 

 

Checking the interpolation condition: 

   (  )     (II.22) 

The determination of   ( ) requires the evaluation of the coefficients           for         

 , To be able to solve the problem, we have: 

 

{
  (  )    

          
 

{
  (    )      

              
 

(II.23) 

 

We therefore deduce for                (  ) can be written in the form  

    ( )    (  )  
  (    )   (  ) 

       
(    )                         (II.24) 

 

II.8.2.1   Matlab.  

 

The Matlab code spline_linear allows to perform interpolation by linear splines. The code uses the 

input vectors pointx, pointy, which are vectors containing the x and y coordinates of the function 

respectively. As for loop is used for the evaluation of the polynomial coefficients. The result is 

compared with the exact result by a validation plot. 

 



20 
 

 
 

Algorithm. spline_linear Linear Splines 

function poly = spline_linear (pointx, pointy) 
 
%   pointx: les coordonnées x 
%   pointy: les coordonnées y 
%   M=(y-y0)/(x-x0) 
%   Sp=a(x-x0)+y0 
 
pointx=(0:0.2:2)'; 
pointy=1+sin(3*pointx); 
n  = length(pointx); 
 
for i=1:n-1 
     
M=(pointy(i+1)-pointy(i))/(pointx(i+1)-pointx(i)) 
xspline=linspace(pointx(i),pointx(i+1),10) 
Sp=pointy(i)+M*(xspline-pointx(i)) 
plot(xspline,Sp) 
pause 
     
end 
 
scatter(pointx,pointy,50,'r','filled') 
grid on; 
xlim([min(pointx) max(pointx)]); 
ylim([min(pointy) max(pointy)]); 
xlabel('x'); 
ylabel('y'); 
title('Linéar Spline') 

 

II.8.3   Quadratic spline 

 

Consider in in [a,b], n+1 distinct points           and n+1 corresponding values           . The 

interpolation by quadratic splines is equivalent to the approximation on each elementary interval 

,         -  by a polynomial of the second degree in the form: 

   ( )  

{
 
 

 
 

   ( )     
                                    ,     -

   ( )     
                                    ,     -

 
 
 

     ( )       
                   ,       -

 (II.25) 

 



21 
 

 
 

The determination of   ( ) requires the evaluation of the coefficients                for   

       , To be able to solve the problem, we know that Each quadratic spline passes through 

two consecutive points, this gives us 2n equations: 

 

{
   (  )    

       
          

 

{
   (    )      

           
            

 

(II.26) 

  

We also know that the first derivatives of consecutive splines are continuous and equal in common 

points, which can give us (n-1) equations: 

 {
   
̀ (    )       

̀ (    )

                         
 (II.27) 

 

 

We are now left with only one equation to solve the problem, we can assume that the first spline is 

linear, then:      =0 

 

II.1.1   Matlab.  

 

Quadratic spline interpolation is implemented in the program Quad_spline. The code calculates the 

polynomial coefficients. We note that the input vectors pointx, pointy are vectors containing 

respectively the interpolation variables, and the corresponding function values. Two for loops are 

used for the spline continuity and derivative continuity condition, the results are compared with the 

exact results by a validation plot. 

 

Algorithm. Quad_spline Quadratic Spline 

function [coef] = Quad_spline (pointx, pointy) 
 
%   pointx: les coordonnées x 
%   pointy: les coordonnées y 
n   =   length(pointx)-1; 
% Nécessite  l’évaluation de  3*n Spécifient a_i  ,b_i  et c_i 
Spi   =   [0;zeros(3*n-1,1)]; 
Mat   =   zeros(length(Spi),length(Spi)); 



22 
 

 
 

% Initialisation de première spline 
% la première spline est linéaire 
Mat(1,1)=1; 
% la condition de continuité de spline 
idx=0; 
count=1; 
for i=2:2:2*n     
    idx=idx+1 
    Mat(i,count:count+2)        =   [pointx(idx)^2 pointx(idx) 1]; 
    Mat(i+1,count:count+2)      =   [pointx(idx+1)^2 pointx(idx+1) 1]; 
    Spi(i)                      =   pointy(idx); 
    Spi(i+1)                    =   pointy(idx+1); 
    count                       =   count+3; 
     
end 
%  continuité de la dérivée de spline 
jdx=1; 
fdx=2; 
for i=2*n+2:3*n 
     
    Mat(i,[jdx jdx+1 jdx+3 jdx+4]) =   [2*pointx(fdx) 1 -2*pointx(fdx) -1]; 
        
    jdx                   =   jdx+3; 
    fdx                   =   fdx+1; 
end 
 
% calcul des coefficients 
coef       =       Mat\Spi; 
j=1; 
hold on; 
for i=1:n 
     
    xspline=linspace(pointx(i),pointx(i+1),10) 
    Splq=coef(j)*xspline.^2+coef(j+1)*xspline+coef(j+2) 
    plot(xspline,Splq) 
    pause 
    hold on 
    j=j+3; 
end 
scatter(pointx,pointy,50,'r','filled') 
grid on; 
xlim([min(pointx) max(pointx)]); 
ylim([min(pointy) max(pointy)]); 
xlabel('x'); 
ylabel('y'); 
title('Quadratic Spline') 
 
end 



23 
 

 
 

 

II.  Question 

Exercice. 1 : write a Matlab program that evaluates the Lagrange, Newton and Hermite 

interpolation of the function  ( )     (   ) on the interval [0,1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 
 

 
 

III. numerical integration  

 

III.1. Trapeze method  

The approximate method of integration, known as the trapezium method, consisting in replacing the 

initial function by a staircase approximation. We will therefore here also tabulate  ( ) at n+1 points 

           in the integration interval  ,     -. We will then interpolate linearly (polynomial of order 

1, i.e. a straight line) to approximate f(x) between two tabulated points. We will therefore replace 

the arcs          by their chords. 

Integration will then be done by summing the area of the trapezoids, i.e. 

∫  ( )   
 

 
∑ (       )

 
   

 

    
              III.1 

We assume that all the points are regularly spaced: 

       
   

 
                                            III.2 

Thus, the previous integral becomes: 

∫  ( )   
  

 
,(     )  (     )    (         )  (       )-

 

 
         III.3 

 We can finally deduce 

∫  ( )   
  

 
,       ∑   

   
   -

 

 
                         III.4 

   

III.1.1 Matlab.  

 

This algorithm calculates the integral "I" of any function via the trapezoid rule in the interval [a, b] 

with n + 1 equidistant points 

Algorithm. trap_int trapeze integration 

functionint= trap_int  
a=input (‘ insérer le borne inferieur de l’intervalle) 
b=input (‘ insérer le borne supérieur de l’intervalle’) 
m=input (‘ insérer le nombre de devision’) 
fun=@(x) (insérer la function ici) 
x=[a:h:b]; 
dim=length(x); 
y=eval (fun); 
if size(y) ==1 
y= diag(ones(dim))*y; 



25 
 

 
 

end 
int=h*(0.5*y(1)+sum (y(2:m))+0.5*y(m+1)); 
 

 

III.2 Simpson's method 

Simpson's method allows the approximate calculation of an integral with the following formula: 

 ∫  ( )   
(   )

 
, ( )    (

   

 
)   ( )-

 

 

 (III.5) 

 

In this formula, one can wonder where the coefficients     and     (which appears as    ) come 

from. 

To obtain Simpson's formula, we will carry out an interpolation with a polynomial of degree 2. A 

polynomial being a function very easy to integrate, we approximate the integral of the function f 

over the interval [a,b], by l 'integral of the polynomial at the nodes           
   

 
            

 ∫  ( )  
 

 

∫  ( )
 

 

 ∫            
 

 

 (III.6) 

 

To facilitate the calculations, we will use the interval ,    - such as  
   

 
 

After integration: 

 ∫  ( )
 

  

 
 

 
   

 

 
       

  (III.7) 

 

We evaluate the integral over the interval,    - we obtain 

 ∫  ( )
 

  

 
 

 
(   )      (III.8) 

 

We take h as a common factor, the expression becomes: 

 ∫  ( )
 

 
 

 

 
(       ) (III.9) 

 

Now, we evaluate the polynomial P on three points in the interval ,    -  



26 
 

 
 

 {

 (  )            (  )

 ( )            ( )

 ( )     ( )

 (III.10) 

 

 

Adding the terms of the previous equation together, we get: 

  (  )   ( )          (III.11) 

 

We decompose 6C into two values 

 ∫  ( )
 

  
 

 

 
(          ) (III.12) 

 

we replace the equation in the expression 

 ∫  ( )
 

  

 
 

 
( (  )   ( )    ( )) (III.13) 

 

Finally, we can see that 

 ∫  ( )
 

 

 
(   )

 
( ( )   ( )    (

   

 
)) (28) 

 

The previous expression can be rewritten for several sub-intervals in the form: 

 
∫ ( )   

 

 
, (  )   (  )   ∑  (   )

 
 
  

   

  ∑ (     )

   

   

-

 

 

 
(III.15) 

 

  (   )   is the length of these subintervals 

        for               

III.3 Matlab.  

 

The present Matlab algorithm calculates the integral "I" via Simpson's rule in the interval [a, b] with 

n + 1 equidistant points 

Algorithm. simp_int simpson integration 

functionint= simp_int  
a=input (‘ insérer le borne inferieur de l’intervalle) 
b=input (‘ insérer le borne supérieur de l’intervalle’) 



27 
 

 
 

m=input (‘ insérer le nombre de devision’) 
fun=@(x) (insérer la function ici) 
h=(b-a)/n;  
x=a:h:b; 
    I= h/3*(fun(x(1))+2*sum(fun(x(3:2:end-2)))+4*sum(fun(x(2:2:end)))+fun(x(end))); 
 

 

III.1 Applications  

 

We give the function 

 ( )=x.^2-2.*x-3 

 Calculate the integral of the function  ( ), taking  ,    - using Simpson's and trapezium 

methods. 

 Implement the two methods on Matlab in order to solve the same function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

 
 

IV. Method of direct solution of systems of linear equations 

 

IV.1 Gaussian method 

Consider the following system of linear equations: 

A x = b 

Where A is a matrix of coefficients, x is a vector of unknowns, and b is a constant vector. 

Gauss's method consists of performing operations on the rows of the matrix A in order to transform 

it into an upper triangular shape. More precisely, we perform operations of the form: 

              

Where    and    are rows of matrix A and c is a constant coefficient. This operation consists of 

adding a multiple of line   to line     We perform these operations so as to have a non-zero element 

in the first column of the matrix, then a non-zero element in the second column, and so on until we 

have an upper triangular matrix 

Then, one can solve the system of equations using upward substitution. This involves raising the 

upper triangular matrix using the following equation for each unknown    : 

      (         (                        ))        

Where   is the number of unknowns. This equation uses the known values of     for   greater than   

to find the value of    . We can thus find the value of all the unknowns   by going up the upper 

triangular matrix. 

IV.1  The LU (Lower-Upper) factorization method 

 

LU is a method for solving a system of linear equations by decomposing the coefficient matrix into 

two lower and upper triangular matrices. It can be mathematically described as follows: 

Consider the following system of linear equations: 

        

Where A is a matrix of coefficients, x is a vector of unknowns, and b is a constant vector. 

The LU factorization method consists in finding two matrices L and U such that: 

        

Where L is a lower triangular matrix (with 1s on the diagonal) and U is an upper triangular matrix. 

Once the L and U matrices have been found, the system of equations can be solved in two steps: 

Solve the system of equations         using backward substitution. 



29 
 

 
 

Solve the system of equations         using upward substitution. 

The    factorization method is often faster than the Gaussian method for large systems of equations 

because it requires fewer substitution and elimination operations. However, the    factorization 

method can be more complex to implement and can fail if the matrix of coefficients is singular. 

IV.3 Matlab.  

 

Algorithm. Gaussian method 

function x = Gauss(A, b) 
% Function to solve the system of linear equations Ax = b 
% using the Gaussian method. 
% A: matrix of coefficients 
% b: constant vector 
% x: solution vector 
[n,n] = size(A); 
x = zeros(n,1); 
 
% Étape 1 : Elimination 
for k = 1 : n-1 
    for i = k+1 : n 
        factor = A(i,k) / A(k,k); 
        A(i,k+1:n) = A(i,k+1:n) - factor * A(k,k+1:n); 
        b(i) = b(i) - factor * b(k); 
    end 
end 
% Step 2: Upward Substitution 
x(n) = b(n) / A(n,n); 
for i = n-1 : -1 : 1 
    x(i) = (b(i) - A(i,i+1:n) * x(i+1:n)) / A(i,i); 
end 
 

Algorithm.    method 

function x = LU(A, b) 
% Function to solve the system of linear equations Ax = b 
% using the LU factorization method. 
% A: matrix of coefficients 
% b: constant vector 
% x: solution vector 
 
[n,n] = size(A); 
x = zeros(n,1); 
L = eye(n); 
 
% Step 1: Factorization LU 
for k = 1 : n-1 
    for i = k+1 : n 



30 
 

 
 

        factor = A(i,k) / A(k,k); 
        L(i,k) = factor; 
        A(i,k+1:n) = A(i,k+1:n) - factor * A(k,k+1:n); 
    end 
end 
U = triu(A); 
 
% Step 2: Solve the system 
y = L \ b; 
x = U \ y; 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

 
 

V. Solving Differential Equations  

V.1  Euler's method 

 

Euler's method is a numerical method for solving ordinary differential equations (ODE) of the type: 

         (   ) 

Où y est la variable dépendante et t est le temps. 

La méthode d'Euler consiste à approcher la solution y(t) en utilisant une série de points discrets 

(       ) (       )     (       ) sur la courbe. À partir d'un point initial (t_0, y_0), la méthode 

d'Euler utilise la dérivée approximative de la courbe à ce point pour déterminer le prochain point 

(t_1, y_1). 

Where y is the dependent variable and t is time. 

Euler's method consists of approximating the solution  ( ) using a series of discrete points 

(       ) (       )     (       ) on the curve. Starting from an initial point (       )  Euler's 

method uses the approximate derivative of the curve at that point to determine the next 

point (       )  

Mathematically, Euler's method can be formulated as follows: 

  *   +               (       ) 

Where h is the time step and i is a time index. Euler's method can be implemented in a loop by 

considering successive values of t and y until the final time is reached. 

Euler's method is simple to implement and can be used to quickly solve simple differential 

equations, but it can give inaccurate results for more complex ODEs due to the approximate nature 

of the method. There are more accurate methods for solving ODEs, such as the Runge-Kutta 

method or the modified form method. 

V.2   The Runge-Kutta method 

 

The Runge-Kutta method is a numerical method for solving ordinary differential equations (ODE) 

of the type: 

dy/dt = f(t,y) 

Where y is the dependent variable and t is time. 

The Runge-Kutta method uses a more advanced approach to approximating the derivative of the 

curve by using multiple intermediate points instead of a single point. There are several forms of the 

Runge-Kutta method, but the best-known form is the Runge-Kutta method of order 4 (RK4). 



32 
 

 
 

The mathematical formula for the Runge-Kutta method of order 4 is given by:: 

          (       )           (                    )    

       (                    )           (                )   *   +  

        (                   )   

Where h is the time step and i is a time index. The Runge-Kutta method can be implemented in a 

loop by taking into account the successive values of t and y until the final time is reached. 

Runge-Kutta's method is more accurate than Euler's method in solving ODEs because it uses 

multiple intermediate points to approximate the derivative of the curve. However, the Runge-Kutta 

method is also more complex to implement and requires more computations for each iteration.   

Matlab.  

Algorithm. Euler method 

function [t, y] = euler(f, tspan, y0, h) 
% EULER Solve ordinary differential equation using Euler's method 
% [T, Y] = EULER(F, TSPAN, Y0, H) with TSPAN = [T0, T1, ..., TFINAL] 
% solves the ODE y' = f(t,y) from time T0 to TFINAL with initial value 
% Y0 using step size H. The function F(T, Y) must return a column vector 
% corresponding to f(t,y). Each row in the solution array Y corresponds 
% to a time in T. 
 
t = tspan(1):h:tspan(end); 
y = zeros(length(t), length(y0)); 
y(1,:) = y0; 
 
for i = 2:length(t) 
y(i,:) = y(i-1,:) + h * f(t(i-1), y(i-1,:)).'; 
end 
 

Algorithm. Runge Kutta method 

function [t, y] = rk4(f, tspan, y0, h) 
% RK4 Solve ordinary differential equation using Runge-Kutta method 
% [T, Y] = RK4(F, TSPAN, Y0, H) with TSPAN = [T0, T1, ..., TFINAL] 
% solves the ODE y' = f(t,y) from time T0 to TFINAL with initial value 
% Y0 using step size H. The function F(T, Y) must return a column vector 
% corresponding to f(t,y). Each row in the solution array Y corresponds 
% to a time in T. 
t = tspan(1):h:tspan(end); 
y = zeros(length(t), length(y0)); 
y(1,:) = y0; 
for i = 2:length(t) 
k1 = h * f(t(i-1), y(i-1,:)).'; 
k2 = h * f(t(i-1) + h/2, y(i-1,:) + k1/2).'; 
k3 = h * f(t(i-1) + h/2, y(i-1,:) + k2/2).'; 
k4 = h * f(t(i), y(i-1,:) + k3).'; 
y(i,:) = y(i-1,:) + (k1 + 2k2 + 2k3 + k4)/6; 



33 
 

 
 

end 
 

 

Reference 
 

1. Jaan, K. (2009). numerical methods in engineering with MATLAB. 

2. Esfandiari, R. S. (2017). Numerical methods for engineers and scientists using MATLAB®. 

Crc Press. 

3. Chapra, S. (2011). EBOOK: Applied Numerical Methods with MATLAB for Engineers and 

Scientists. McGraw Hill. 

4. Mathews, J. H., & Fink, K. D. (2004). Numerical methods using MATLAB (Vol. 4). Upper 

Saddle River, NJ: Pearson prentice hall. 

5. Valentine, D. T., & Hahn, B. (2022). Essential MATLAB for engineers and scientists. 

Academic Press. 

6. Quarteroni, A., Sacco, R., & Saleri, F. (2008). Méthodes Numériques: Algorithmes, analyse 

et applications. Springer Science & Business Media. 

7. Quarteroni, A. M., Sacco, R., & Saleri, F. (2000). Méthodes numériques pour le calcul 

scientifique: programmes en MATLAB. Springer Science & Business Media. 

8. Grivet, J. P. (2021). Méthodes numériques appliquées. In Méthodes numériques appliquées. 

EDP sciences. 

 

 


